Thursday, January 31, 2013

Kohama MgFC 技術

マグネシウム燃料電池、難燃性マグネシウム合金をアノードに使用」の「Kohama MgFC 技術」を書き直しました。
*********************

Kohama MgFCの技術の大きな概念は次のようだ。
1.マグネシウム燃料電池において、負極材がアルミニウム及びカルシウムを含有するマグネシウム合金で構成される、そして電解液には負極材からマグネシウムイオンが溶出する。 (←Claim 1)
2.マグネシウム合金に含まれるアルミニウムは3重量%以上9重量%以下の範囲である。
カルシウムは1重量%以上3重量%以下の範囲である。 (←claim 2)
3.使用する電解液は、塩化ナトリウム水溶液、水酸化ナトリウム水溶液、炭酸水素ナトリウム水溶液、及び過炭酸ナトリウム水溶液からなる群から選ばれる少なくとも1つである。 (Claim 3)

このような組成を持つマグネシウム合金は少なくとも次の特徴を持っている。
特徴―1:Kohama MgFCは自己放電の問題を解決した、
5種類のサンプル(様々な組成のマグネシウム合金)を18重量%塩水に浸漬させた後、その重量の減少量を測定した。
Alを6重量%、Caを2重量含むマグネシウム合金(サンプル1)については、塩水中でほとんど溶解しなかった。
実験結果より、サンプル1を電池の負極材として用いることによって、塩水中での負極材の自己放電を防止できることが判明した。
特徴―2:1) 適当な反応性を有している。2) 燃焼(反応)を抑制する能力を有している。
特徴1) は電池材料に適していることを示している。特徴2) は工業用材料に適していることを示している。
このマグネシウム合金はこのように相反する特性を有している。が、これらが相乗的に働き、電池材料として優れた性能を発揮する。
この特徴を何故持つかの推測:「アルミニウムとカルシウムを含むマグネシウム合金は、通常は金属Mg相(固溶体)と化合物相(Al2Ca)の2相からなる複層組織を持つ。
化合物相が比較的不活性なので、この合金はマクロ的には反応性が低くなる。このことは、経験によって確かめられている。
また、この複相組織が十分に微細な場合は、全体として腐蝕反応(溶解反応)は均一になり、穏やかに進行する。このことも、上記の反応性と反応抑制能に一役買っているものと推測される。
つまり、マグネシウム合金の反応性の高い母相と不活性な第2相による反応抑制が、電池の負極材としての優れた性能に大きく寄与していると考えられる。」
特徴―3:Kohama MgFC のマグネシウム合金からは、理論電気容量の約80%の電気を取り出すことが可能。このことは実験的に確認されている。
純粋なマグネシウムの理論電気容量は、2.2Ah/gである。マグネシウム合金は、マグネシウムを例えば92重量%含んでいる。このマグネシウム合金の電気容量は1.63Ah/g (以下の実験での値) である。このように、マグネシウム合金からは、理論電気容量の約80%の電気を取り出すことができるわけである。高い効率で電気を取り出すことが可能。
以下の実験を行った。
負極材 :Alを6重量%、Caを2重量%含むマグネシウム合金
正極集電体:カーボンフェルト
電解液 :18重量%塩水
実験の結果、負極材(マグネシウム合金)の減少量が0.601gであり、マグネシウム合金1g当たりの電流量が1630mAh/gであり、電力量が476mWh/gであった。
特徴―4:長期間に亘って安定的に電気を取り出すことができる。
マグネシウム燃料電池を作製してモータに電流を流す実験を行った。
負極材 :Alを6重量%、Caを2重量%含むマグネシウム合金
正極集電体:カーボンフェルト
電解液 :18重量%塩水
板状のマグネシウム合金の片面をテープで被覆して、マグネシウム合金の一方の面だけを露出したものを負極材として用いた。
この実験結果より、マグネシウム合金を負極材として用いた場合には、従来のマグネシウム合金を用いた場合よりも、長期間に亘って安定的に電気を取り出すことができることが判明した。
Written based on JPA No. 2012-234799.

Kohama MgFC Technology


"Kohama MgFC Technology" in "Magnesium fuel cell, its anode made of flame-retardant Mg alloy" has been rewritten as below. 
***************

Kohama MgFC technology may be defined as below.
1. In an MgFC, a negative electrode made of a magnesium alloy containing contains aluminum and calcium, and an electrolytic solution into which magnesium ions emanating from the negative electrode elutes. (←Claim 1)
2. In the MgFC (defined above), the aluminum contained in the magnesium alloy ranges from ≧3 wt% to ≦ 9 wt%, and the calcium contained therein ranges from ≧ 1 wt% to ≦ 3 wt%. (←Claim 2)
3. In the MgFC (defined above), the electrolytic solution is preferably one selected from among sodium chloride solution, sodium hydroxide solution, sodium bicarbonate solution, and sodium percarbonate solution. (←Claim 3)

The magnesium alloy thus composed has at least the following advantageous features.
Feature-1 Kohama MgFC, which uses the flame-retardant magnesium alloy for its negative electrode, successfully solved the self-discharge problem, which is essential to the conventional MgFC.
5 samples having respectively different compositions were prepared. Those samples were immersed in a 18 (wt) % salt water. Weight decreases of those samples were measured.
In the sample 1 (having the magnesium alloy containing 6 wt% of aluminum and 2 wt% of calcium), the magnesium alloy was little eluted into the salt water.
The result shows that where the sample 1 is applied to the negative electrode of the MgFC, no self-discharge will occur in the battery.
Feature-2 1) It has a satisfactory reactivity. 2) It has an ability to control combustion (reaction). The characteristic 1) indicates that it is suitable for the battery material. The characteristic 2) indicates that it is suitable for the industrial material.
Those contradictive characteristics of the magnetic alloy synergically operate to provide an excellent battery material.
The reason why the magnesium alloy has such characteristics:
“The alloy containing aluminum and magnesium has a bilateral structure consisting of two phases, i.e., a metal Mg phase (solid solution) and an Al2Ca compound phase. The compound phase is relatively inactive. The reactivity of the alloy is macroscopically low. The fact is empirically confirmed.
Where the bilateral structure is sufficiently fine, the corrosion reaction (elution reaction is uniform as a whole and gently progresses. The above fact will contribute to the reactivity and the reaction control. It appears that the parent phase of the magnesium alloy having high reactivity and the reaction control by the second phase being inactive cooperate to provide the good performance of the negative electrode.”
Feature-3: The Kohama magnesium alloy is capable of producing electricity of about 80% of the theoretical electric capacity of the magnesium alloy. This is experimentally confirmed.
The theoretical electric capacity of pure magnesium is 2.2Ah/g. The magnesium alloy contains 92 wt% of magnesium, for example.
The electric capacity of the magnesium alloy is 1.63 AH/g.
An experiment was conducted under the following conditions.
Negative electrode: magnesium alloy containing 6 wt% of aluminum and 2 wt% of calcium
Positive electrode current collector: carbon felt
Electrolytic solution: 18 wt% salt water
The experiment results: decreased amount of the magnesium alloy = 0.601g, current amount per 1 g = 1630mAh/g, and electric power = 476mWh/g
Feature-4: The MgFC is capable of producing electricity stably and for a long time.
An experiment was conducted in which an MgFC was manufactured and feeds current to a motor.
In the MgFC,
Negative electrode: magnesium alloy containing 6 wt% of aluminum and 2 wt% of calcium
Positive electrode current collector: carbon felt
Electrolytic solution: 18 wt% salt water
A plate-like magnesium alloy was used. One side of the magnesium alloy plate is covered with a tape, while the other side is exposed to the electrolyte.
The experiment result showed that the MgFC using the magnesium alloy continuously produces electricity more safely and more longer than the MgFC not using the magnesium alloy.
Written based on JPA No. 2012-234799

Sunday, January 27, 2013

Future lays somewhere beyond lithium-based chemistries-2


Next Generation Batteries 2013

- April 30- May 1, 2013 - Boston, MA

Rechargeable microfluidic redox battery
by Erik Kjeang, PhD, PEng, Simon Fraser University, microfluidic Redox Battery

A rechargeable microfluidic redox battery is demonstrated that can operate without a membrane to separate the two half-cells.
Developed as a low-cost power source for mass-produced wireless sensors and electronics, this transformative flow battery concept can be integrated on-chip and is compatible with low-cost materials and inexpensive micromachining and micro-fabrication methods.
The layout, functionality, and performance of the proof-of-concept device will be discussed.
- Learn More about the Technical Program
- Learn More about Exhibit and Sponsorship Opportunities

- Download the Conference Brochure
-
Save $100 Now with Early Bird Registration
- Expires February 8, 2013

If interested, please go to my site (Event).




Magnesium fuel cell (MgFC)


The magnesium fuel cell (MgFC) is now commercially available from MagPower Systems Inc. The MgFC is capable of driving the devices, for example, coffee maker. MagPower uses a "hydrogen inhibitor" as its properietry technology.
Kohama Lab. et al are now actively developing the magnesium fuel cell (MgFC) functioning as like a primary battery. The MgFC uses a flame-retardant magnesium alloy for its anode (negative electrode).
MgFC is a kind of the “metal-air battery”, and uses magnesium for its metal. “Magnesium, oxygen and water reactively cooperate to generate a magnesium hydride (Mg(OH)2), so that an electromotive force is generated between those electrodes.” The fact clearly shows that the MgFC is a chemical electric generator, which chemically generates electricity. Its function is active. Kohama MgFC operates like a primary battery that stops electric generation when the magnesium at the negative electrode is used up. However, the problem is secondary, which will be solved from now.
In this respect, the hydrogen fuel cell (H2FC) is also a chemical electric generator, which generates electricity using hydrogen as its fuel. It continues its electric generation so long as the fuel supply continues.
As known, the ordinary battery is supplied with electricity from an external electric source, stores the electricity supplied, and feeds it to a place where it needs. Its function is passive. If it is left for a long time, it naturally discharges and loses the electricity stored. If interesting, please go to here.




マグネシウム燃料電池(MgFC)

現在、MgFC (マグネシウム燃料電池)はMagPower Systems Inc. より入手可能である。コーヒーメーカーを駆動可能。MagPowerは特許取得済みの"hydrogen inhibitor"を使用している。

Kohama Labo. et al* もMgFCを開発している。特殊な難燃性マグネシウム合金をアノード(負極)に使用している。
MgFCは金属―空気電池であり、その金属がマグネシウムである電池。この電池では、マグネシウム、酸素及び水から水酸化マグネシウム(Mg(OH)2)が生成され、その結果正負極間に起電力が発生する。この両電極間に負荷を接続すれば、電気が流れる。 つまり、この電池は発電する。化学的に電気を発生する化学的発電装置なのである。Kohama MgFCはマグネシウムを使い切れば発電機能が失われる、一次電池のように働く。 しかし、この問題は二次的な問題であり、今後改良すればよい。
水素燃料電池(H2FC)も、この点において化学的な発電装置である。これは水素を燃料として発電する。H2FCは水素の供給を続ければ発電を続ける。

水素燃料電池(H2FC)も、この点において化学的な発電装置である。これは水素を燃料として発電する。H2FCは水素の供給を続ければ発電を続ける。
一般の電池は電気の供給を受け、それを蓄電し、出力する。受動的だ。放っておけば自然に放電する。 If interesting, please go to here.

Monday, January 21, 2013

Successful solutions to self-discharge problem in MgFC

1) Magpower systems successfully solved the self-discharge problem by using “hydrogen inhibitors” as its properietry technology. Reference is made to the company’s website.
2) Susumu Suzuki succeeded in solving the self-discharge problem by using a polyvalent carboxylate aqueous solution. For details, reference is made to WO/2011/125150 MAGNESIUM BATTERY.
3) Prof. Kohama solved the same problem by using a flame-retardant magnesium alloy for the negative electrode. The technology is detailed in JPA No. 2012-234799.
South-Korea's MgFC recently developed is newsed. The researchers succeeded in driving the car a distance of 200 km by the MgFC of 40 kg set on the car.
The positive and the negative electrodes of the MgFC are improved and the battery structure is changed. The results are that the chemical reaction efficiency at the negative electrode and the chemical reaction rate are both increased, and that the energy efficiency and the energy density are doubled when compared with those of the conventional one.
It is unknown how to overcome the self-discharge problem inherent to the MgFC and the Mg danger problem.
[“Magnesium fuel cell, its anode made of flame-retardant Mg alloy” partially revised as just above.]



マグネシウム燃料電池、成功している自己放電対策技術

自己放電の問題の解決技術は幾つか知られている。
1) Magpower systemsはhydrogen inhibitorsで自己放電の問題を解決している。詳しくは同社のhomepageをご参照ねがいたい。
2) 鈴木進氏が、多価のカルボン酸塩の水溶液を用いることで自己放電の問題を解決している。詳しくは、特許公開2010-182435をご参照願いたい。
3) Prof. Kohama (Tohoku University) は難燃性マグネシウム合金を負極に用いてこの問題を解決している。特開2012-234799に詳しく書いてある。

最近、韓国で車載用MgFCが開発された。200kmを40kgのMgFCで走らせている。空気マグネシウム電池の負極と正極を改良し、負極での反応効率と正極での反応速度を改善した、また電池構造を変えた。結果、エネルギー効率とエネルギー密度が向上し、出力は従来の2倍程度向上させた.。自己放電をどのように処理しているかなどの具体的な技術についてはわからない。
マグネシウム燃料電池、難燃性マグネシウム合金をアノードに使用」の修正分


Sunday, January 20, 2013

Future lays somewhere beyond lithium-based chemistries-1

Application Driven Development of New Battery Chemistries & System Designs - Lithium & Beyond
Next Generation Batteries 2013 - April 30- May 1, 2013 - Boston, MA
First Program Announcement - Save $100 with Early Bird Registration

Featured Abstract:
Vincent Sprenkle, PhD, Pacific Northwest National Laboratory, Electrochemical Energy Storage Development at PNNL
The environmental concerns and constraints of the fossil fuels, combined with energy security concerns, have spurred increasing interest in higher efficiencies systems and renewable energy technologies.
The transition from fossil based resources to renewable cannot be realized without effective energy storage technology.
The DOE Office of Energy Storage Program at Pacific Northwest National Laboratory (PNNL) is focused on the development of cost effective energy storage technologies to meet future energy needs.
Among the most promising storage technologies for the stationary applications are electrochemical storage technologies including redox flow batteries and Na-metal battery, and Na-ion technologies.

If interested, please go to my site (Event).

Saturday, January 19, 2013

MgFC & Magnesium, their Advantageous Features

Advantages of MgFC and Mg (magnesium) are listed up as far as those occur to my mind.
1) Energy density is high: 2 kWh/kg  5 times or higher than of the current L-ion battery and is comparable with that of the current H2FC. 1464mAh/g(MgFC)、150mA/g (L-ion battery)  experrimental values
2) Unlimited resources ← solar energy & Mg
3) Used Mg is recyclable.
4) Non-toxic and clean.
5) Cheap: Price = nearly equal to about 1/2 of that of the lead-acid battery currently used.
6) Safe: Flame-retardant Mg alloy used is significantly safe so as to allow its welding in air.
7) Easy handling: Smelted Mg is readily transported in the form of particles to any place, which needs the magnesium, in any country in the world. The magnesium serves as a carrier carrying solar energy. From the electrical viewpoint, the smelted Mg stores the solar energy in the form of free electrons and is transported to a target place. When it is incorporated into the MgFC, the free electrons cause a current flow . Electricity is generated. The fact indicates that the smelted Mg stores electricity, and the electricity storage continues so long as it exists. The electricity is safely stored、transported, and utilized. This is an altogether new energy utilizing process. When the process is compared with DESERTEC project, its advantages will be clearly understood.
8) The lifespan of MgFC is significantly long, almost semi-permanent. It is 60 to 70 years (if the salt water as the electrolyte is removed) in the case of the MgFC used like the primary battery.
9) The smelted Mg, which is used for electricity generation, is also used as industrial materials. See Table “Advantages of Mg and its Applications”  and ”GM succeeds in applying magnesium sheet metal to vehicles” & “Next generation high-speed transport system - AeroTrain –“
>> Closely related matters are addressed here.





Friday, January 18, 2013

マグネシウム燃料電池(MgFC) & マグネシウムの利点

MgFC & マグネシウムの利点を列挙してみました、思いつく範囲で。
1) エネルギー密度が非常に高い。2kWh/kg←現在のリチウム電池の5倍以上、水素燃料電池並み。1464mAh/gMgFC)、150mA/g (Li電池)←実験値
2) 無限の資源→ 太陽光エネルギー & マグネシウム (Mg)
3) その資源の再利用が可能
→ Mg精錬
4) 無害、クリーン
5) 安い、現在自動車で広く使われている鉛電池と比較した場合、その半分
6) 安全→ 難燃化したMg合金を使用、これは空気中で溶接ができる程
7)
扱いが容易→ 精錬したMgは粒状物として使用地に輸送可能。Mgは太陽光エネルギーのキャリアとして機能する。電気的に見ると、精錬されたMgは自由電子の形で貯蔵され、運ばれる。MgFCではこの流れが電流となり、電気の発生となる。言うならば、smelted Mgは電気を蓄えることができるわけである。それが存在し得る限り電気を貯蔵している。電気を安全に貯蔵し、輸送し、利用する。これはまったく新しい形のエネルギー利用形態。DESERTEC projectと比べると、MgFC の利点は明確。8) 寿命が長い、実用面で見ると半永久→ 現在開発中のもの:約60 to 70年、電解液(塩水)を外しておけば)、ただし、MgFCを一次電池様に使用した場合
9) 精錬したMgはa) 電気への変換に加え、b) 工業材料としての利用される→ 「Mgのメリットと用途」の表、”GM succeeds in applying magnesium sheet metal to vehicles” & “Next generation high-speed transport system - AeroTrain –“
>> Closely related matters are addressed here.



Friday, January 11, 2013

Next Generation Batteries 2013


The deadline for abstract submission is January 11th, 2013
Gain Valuable Exposure For Your Products and Research !Attendees at this event 1) represent the very top industry, academic and government researchers from around the world and 2) provide an extremely targeted and well-qualified audience for exhibitors and sponsors.
Your participation is the most cost-effective way to gain high quality, focused exposure with these influential leaders. More> go to Event

Past exhibitors at Next Generation Batteries 2013 include:
Arbin Instruments,
Arkema Inc.,
BASF,
Battery Solutions,
BEST Magazine,
BioLogic USA,
BS&B Safety Systems,
CD-adapco,
Chroma ATE Inc.,
Cincinnati Sub-Zero,
Coatema Coating Machinery GmbH,
Detroit Testing Laboratory,
Exponent, HEL Ltd.,
Hibar Systems,
Imara Corp.,
Intertek,
K2 Energy Solutions,
Maccor,
MANZ USA,
MEGTEC Systems,
Mobile Power Solutions,
MTI Corporation,
Netzsch Instruments,
PEC Corp.,
Phillips Plastics,
Setaram,
SGS Consumer Testing,
Thermal Hazard Technology, and
Wildcat Discovery Technologies.



Monday, January 7, 2013

Magnesium fuel cell, its anode made of flame-retardant Mg alloy

The magnesium fuel cell (MgFC) is now commercially available from MagPower Systems Inc. The MgFC is capable of driving the devices, for example, coffee maker. MagPower uses a “hydrogen inhibitor” as its properietry technology.
Kohama Lab. et al are now actively developing the magnesium fuel cell (MgFC) functioning as like a primary battery. The MgFC uses a flame-retardant magnesium alloy for its anode (negative electrode).
MagPower has successfully suppressed the hydrogen generation causing the self-discharge by using the properietry hydrogen inhibitor. “MagPower has developed powerful, reliable and environmentally friendly non-toxic inhibitors that have been shown to control the formation of hydrogen in certain commercial applications. ”
Kohama et al 1) use a flame-retardant magnesium alloy for the anode of the MgFC 1) to substantially solve the self-discharge problem, and 2) secures stable electricity supply for a long time. >> More