Friday, March 29, 2013

Future lays somewhere beyond lithium-based chemistries-11

I. Next Generation Batteries 2013: April 30- May 1, 2013 - Boston, MA
>> More
Hotel Discount Deadline is April 6, 2013 - Click to Book your Room

II. Northeastern University Announces a Two Day Summit on Large Scale Energy Storage: May 2-3, 2013 in Boston, MA USA
>> More


Nanofiber/Microfiber Lithium Ion Battery Separators
Current stretched porous film battery separators for lithium ion batteries are thin, strong, and provide a good barrier between electrodes, at the cost of having very high internal resistance and low ionic flow.
In this work, linear nanofibers and microfibers are combined in wet laid nonwoven processes to give separators that are strong and thin, but have higher porosity (60%) and much higher ionic flow.
Batteries made with these separators are able to give similar performance at much higher electrode coat weights, reducing the surface area of both current collectors and separator and also the volume of electrolyte needed.
Total mass reduction can be as high as 20% (1.3 kg/kWh), with raw material cost savings of over 25% ($55/kWh).
Volume savings are 0.5 liters/kWh.
Batteries made with similar construction show much higher charge and discharge rate capability.
Temperature stability is also improved, from a current stability temperature of about 110°C up to 175°C.
Applications include all power source applications that require high energy density, high power, high temperature stability, including cell phones, laptop and tablet computers, power tools, and electric and hybrid vehicles.
This presentation will be given by Brian Morin, of Dreamweaver International at Next Generation Batteries 2013.
If interesting, please go to Event

Wednesday, March 27, 2013

Mag Soleil プロジェクト

[Modified as below]
「Mag Soleil プロジェクト」は、太陽光エネルギーを利用してマグネシウムを精錬し、それを電気エネルギーとして、さらにそれを軽量金属材料として利用すると言うプロジェクトである。国の電気エネルギーをすべて賄い得て、また軽量化に向かう未来金属材料を提供する。 このため、太陽光エネルギーの密度の高い砂漠地帯に精錬所を作る。再生可能エネルギーの切り札となる、 壮大なスケールを持つプロジェクトである。 DESERTEC プロジェクト を凌駕する。

持続可能でクリーンな技術の開発、これは必須、我々が生存するためには。 地球上で利用可能な1次エネルギー6種類、その中の64%以上が太陽光エネルギー。無限で、絶えることがない。これの利用。
砂漠での太陽光のエネルギー密度は非常に高い。日本の3倍(約3kW/㎡)。日射量は約7.5倍。 日本の全消費エネルギーを約70㎞2の面積で賄える。 この太陽光エネルギーをどのように獲得し、必要地に運び、利用するか。最適地は赤道付近サンベルト地帯にあり、現在はAustralia の北部を想定している。

マグネシウムのクラーク数は8番目であり、地表および海水に広く、多量に存在する。 天然に遊離状態では産出しない。しかし、精錬が可能であれば、世界中どこでも枯渇の心配はない(excerpted from NC network.)。 難燃化したマグネシウムは非常に安全であり、その安全の度合いは空気中で溶接が可能な程である。
>> More

Mag Soleil Project


[Modified as below]
"Mag Soliel project" is a large-scale project which produces magnesium by the smelting process based on the solar energy and utilizes the resultant magnesium for electrical energy production and as a new light metal material. The magnesium produced is capable of covering the whole electrical energy consumed by the nation, and further provides a future light metal material having a trend toward light weight. The magnesium-smelting site is located in a solar-energy rich desert. The project will be an ace for the renewable energy society.

Development of renewable and clean technologies is essential. We must live on the earth. Six types of primary energies available on the earth are calculatively compared in amount. The result is that solar energy is 64% or more of the total amount of those primary energies. The solar energy is limitless in amount and eternally available on the earth. This results in the necessity to make the most of the solar energy.
The solar energy density in the desert is significantly high. It is about 3kW/㎡, about 3 times higher than that in Japan. The quantity of solar energy is about 7.5 times or more than that in Japan. The area of about 70 km2 covers the total energy consumption of Japan .What we now have to do is how to harvest solar energy, transport the gathered one to places that need it, and to utilize it as required.  Incidentaly, the best location in the world is somewhere in the sunbelt region of and near the equator. The northern part of Australia seems to be the best candidate for such a location at present.
>> More

Sunday, March 24, 2013

Future lays somewhere beyond lithium-based chemistries-10

I. Next Generation Batteries 2013: April 30- May 1, 2013 - Boston, MA
>> More
II. Northeastern University Announces a Two Day Summit on Large Scale Energy Storage: May 2-3, 2013 in Boston, MA USA
>>
More

New Binders for Lithium-Sulfur-Batteries
PVDF, a common binder for sulfur-cathodes, requires toxic and/or low-volatile solvents.
The drying conditions of such cathodes are either extreme, with loss of active material by sublimation or ambient, which enhance fabrication cost.
Due to economically viable application processes, enhanced substrate adhesion, mechanical strength, chemical resistance, material and fabrication costs, phenolic-, polyurethane-, epoxy- and silicon-based binders are studied, considering the binders electrochemical resistance first.

This presentation will be given by Brigitta Pascucci of the German Aerospace Center (DLR) at Next Generation Batteries 2013.
If interesting, please go to Event

“Sustainable Society” is implemented as “Mag Soleil project”

<Modified as below>Prof. Kohama (Tohoku University) et al are now carrying out a "Mag Soliel project". A magnesium-contained material naturally occurring is smelted in the desert where solar energy density is extremely high. The resultant magnesium is transported to a target place. In the place the magnesium is converted into electrical energy and/or used as a light metal material as an industrial material. The magnesium oxide (MgO) produced after the magnesium is also smelted for its reuse.

Fossil fuel = 30 years, nuclear fuel = 50 years, and shale fuel = 200 years, the predicted longevities of the fuel resources. If future actual longevities of the fuel resources will deviate from those predictive longevities by 30% in the positive direction, the longevities of those resources are not so long.

After those energy resources are consumed up to exhaustion, how we should cope with the fuel or energy problem. The world population has exceeded 7 billion, and the population increase will yet continue. If we do not have the alternatives to the fuel resources, choices left us are to decrease energy consumption, to decrease the population, to bring energy resources from another celestial body, to stop energy consumption, to stop the sustaining of mankind, and so on. Those occurred to my mind.

A "sustainable society" has been presented to us, as a solution to the energy problem. We are seeking effective implementations of the concept of the sustainable society. A "Mag Soleil project" is one of the implementations. Prof. Kohama, Tohoku University, is carrying out the Mag Soleil project. The eco-friendliness is the preamble of the concept of the Mag Soleil project. The project based on the eco-friendliness has a mission to develop the technologies satisfying the eco-friendliness and to apply the development results to the society.

Solar energy and magnesium resources are almost limitless and eternally exist. The Mag Soleil project provides ready-for-use energy and materials by utilizing those resources. Used magnesium is smelted and used again, viz. it is recyclable. Substantially only the solar energy is used for the smelting process. Little load is imposed on the environment, with clean and low price energy.

Application of magnesium to new light materials is yet not large. Note that the magnesium has excellent properties when it is used as the practical metal#1. Efforts are being made to apply magnesium to vehicles #2. Prof. Kohama is progressively making application of magnesium to the high-speed transport system. Prof. Kohama also found the fact that the flame-retardant magnesium alloy is effective when it is applied to the battery, and is now developing a magnesium fuel cell, which will be described later in detail. The magnesium is little poisonous to the living body. Magnesium is really a future metal material.


Prof. Kohama says, "The MgFC powered by the magnesium smelted by solar energy can sufficiently supply the total energy consumed in Japan. The government should secure a desert including or near a bay area, for example, the Northern Australia."
Prof. Kohama advocates swiftly energy-shifting from the traditional energy such as nuclear energy and fossil energy to magnesium fuel energy. He made a rough estimate of the building cost of a 1,000,000 kW magnesium plant at about 1000 Oku-Yen. Its details consist of about 500 Oku-Yen (magnesium smelting plant) and about 500 Oku-Yen (MgFC plant). 1000 Oku-Yen is lower than the half of the nuclear power plant.
>> More



「持続可能な社会」の一つの形 – 「Mag Soleil project」

<Modified as below>「Mag Soleil (太陽エネルギー) プロジェクト」がProf. Kohama (小濱) (東北大)等 によって実行されている。自然に存在する、また使用済みマグネシウムを太陽エネルギーを用いて精錬し、精錬したマグネシウムをその消費地に運び、電気エネルギーに変換し利用し、さらにマグネシウムを軽量素材として利用する。精錬する場所は砂漠である。砂漠は太陽光エネルギー密度が非常に高い。

化石燃料 = 30年、原子燃料 = 50年、シェール燃料 = 200年といわれている。 予測値がプラス方向に30%ずれたにしろ、長くはない。 終わったらどうするのか。 人口が70億人を超えている。増加傾向はまだ続く。 代替がないとすれば、考えられることは、 消費を減らす、人口を減らす、他の星から持ってくる、消費を止める、人類の持続を止めるなどが思い浮かぶ。

「持続可能な社会」が、このエネルギー問題に対する解として提示されている。その解の具体的な形を、今、我々が模索している。この模索の中の一つ、それが「Mag Soleil プロジェクト」だ。環境親和を前提とし、それを満たす技術の開発とその結果の社会への適用である。太陽光エネルギーとマグネシウム、これらはほぼ無限にあり、永久に続く資源だ。これらを用い、利用可能なエネルギーと素材を提供する。使用したマグネシウムは精錬し、再利用が可能である。精錬は実質太陽エネルギーのみを用いて行う。環境への負荷はほぼゼロ。得られるエネルギーはクリーンで廉価である。

マグネシウムの軽量化新素材への利用はまだ少ない。しかし、マグネシウムの実用金属としての特性は非常に優れている#1。自動車への適用が進んでいる#2。高速移動体への適用はProf. Kohama et alが現在進めている。また、Prof. Kohamaは難燃性マグネシウム合金の電池での実効性を発見し、現在開発中である。後で詳しく述べる。また、生体への毒性はほとんどない。 マグネシウムは未来金属材料である。

国内の全必要エネルギーを、太陽光精錬で生産するマグネシウムを使用したマグネシウム燃料電池で賄える。臨海地を持つ砂漠(例:北部オーストラリア)を早急に確保すべきだ(Pro. Kohama)。
Prof. Kohamaは原子力・化石燃料からマグネシウム燃料へのエネルギーシフトを急いで行うべきだとしている。 100万kW級マグネシウムプラントの建設費は約1000億円。 内訳は1)約500億円 = Mg 精錬プラント + 2) 約500億円 = Mg 燃料電池プラント。 原発の半分以下。
>> More

Thursday, March 21, 2013

米国のクリーンエネルギー特許推移 (CEPGI) 、第四期 in 2012

特許所得数は記録的な値となった。
ToyotaがGEからトップの座を奪った、これはPrius効果の結果である。
Fuel Cell, solar, wind, hybrid/electric, biofuels分野の特許取得数が上昇した。
米国が世界をリードしており、またカリフォルニアがニューヨークを抜いた (特許取得数で)。


ALBANY, NY—Heslin Rothenberg Farley & Mesiti P.C. is pleased to announce the 2012 year end, and 4th quarter, results for the Clean Energy Patent Growth Index (CEPGI) by the firm’s Cleantech Group.

The CEPGI tracks the granting of patents in the Clean Energy sector and monitors important technological breakthroughs in this field.
Victor Cardona, Co-chair of the firm’s Cleantech Group stated,
“we are pleased to announce the results for the GEPGI which reveal Clean Energy Patents jumped 30 percent to hit an all time high in 2012, up over 700 patents relative to 2011.
Toyota took the yearly Clean Energy Patent Crown from GE in 2012 while also leading the Fuel Cell and Hybrid/Electric vehicle sectors.
U.S. patent owners hold more U.S. patents than any other individual country but less than the combination of all the other countries.
Also, solar and wind patents continued their rise with solar patents beginning to contend with fuel cell patents for the lead sector in clean energy patents.”

The CEPGI provides an indication of the trend of innovative activity in the Clean Energy sector since 2002 in the U.S., along with Leading Patent Owners and Leading Country and State information.
Results through the fourth quarter of 2012 reveal the CEPGI for 2012 to be at its highest level ever at 3061 granted patents, jumping 730 patents.
>> More
       




Tuesday, March 19, 2013

Magnesium Smelting

Utilization of solar energy for electric power generation. Power generation at a solar-energy rich desert. Transmission of the generated electric power to power -consuming areas. Those constitute the concept of the DESERTEC project. Electric power is generated in the Sahara (by steam turbine generators), the generated power to EU countries through power transmission lines (submarine cables laid in the Mediterranean Sea) to the EU countries. The average distance is 1,500 km between the desert and the EC countries. 6,000 km is the distance from the desert to Japan. It is clear that application of the DDESERTEC method to Japan is impossible. To cope with, Prof. Kohama proposed the concept to smelt the magnesium-contained material at the desert, and to transport the resultant magnesium to its consuming places. The concept involves using the Pidgeon process for the smelting process, and the solar furnace for producing the magnesium smelling temperature. The magnesium smelting process comes in two varieties, Pidgeon process and electrolytic process. The Pidgeon process is carried at 1,200 degrees C and using a ferro-silicon (reducing agent). The smelting temperature is produced by burning Koks, resulting in emission of a large amount of carbon dioxide gas. His Tohoku University has long utilized the solar furnace for material research. The solar furnace has produced high temperature near to 4,000 degrees C. There is no problem for the furnace to produce 1,200 degrees C. It was experimentally confirmed that the Kohama smelting process effectively operates. The conversion efficiency by the solar-furnace based smelting process is over 76%, much higher than that of other ones. See “Quality of Natural Heat”, page 4. Electric energy is used for forming the ferro-silicon as the catalyst. The method needs much cost. Solar energy may be used in place of the electric energy. If necessary, new catalysts may be developed. The electrolytic process as the magnesium smelting process essentially uses electricity, which is high in cost, resulting in use of the Pidgeon process. China employs the Pidgeon process and almost monopolistically supplies the magnesium to other countries (around 90%). The main cause for this is that the production cost is high. Prof. Yabe (Tokyo Institute of Technology) is now developing another new magnesium smelting process. The Yabe smelting process uses a solar pumped laser (originally developed by the professor) to generate the heat of 20,000 degrees Celsius, which is high enough to smelt magnesium compounds. The Yabe smelting process is under demonstration test. For more details, please ask PEGASOS ELECTRA Co., Ltd.If interesting, please go to here.

マグネシウム精練

太陽光エネルギーの発電への利用、そして太陽光エネルギーの密度の高い砂漠での発電。発電した電力を送電線を介して電力消費地に送る。DESERTEC projectである。サハラ砂漠で太陽熱により発電(蒸気タービン)し、送電線(地中海に海底ケーブルを敷設)を介してEU 諸国に送電する。平均距離 1500kmである。DDESERTEC手法の日本へ適用は不可能。ここから日本への距離は6, 000kmである。

これに対し対応的に案出されたのがProf. Kohamaの「砂漠でマグネシウムを精錬し、利用地に運ぶ。」である。精錬法としてはピジョン法を用いる。太陽炉を用いて精錬のための高温を得る。マグネシウムの精錬法としては熱還元法(ピジョン法)と電解法とがある。 現在使用されているピジョン法は1,200 ℃の温度とフェロシリコン(還元剤)を用いて行われる。この高温はコークスを燃やして得ている。大量の炭酸ガスの発生となる。
氏の大学は太陽炉の利用に長い実績を持っている。物材研究に利用してきた。4,000 ℃近い温度を出している。1,200 ℃の温度は全く問題がない。Kohma 精錬法の実効性は実験的に確認してある。
太陽熱を用いたマグネシウム精錬が、変換効率が最もよい。See 「自然界で得られる熱の質」、page 4。フェロシリコンは電気エネルギーで生成している。経済性がよくない。しかし、代わりに太陽熱を用いることが可能。新たな還元剤の開発も可能。

マグネシウム精錬法としての電解法は電気のコストが高く、ピジョン法の採用となっている。中国がピジョン法を採用しマグネシウムを世界にほぼ独占的に (90%前後) 供給している。生産コストがその主な理由。

現在、Prof. Yabe (東工大) が他の新しい精錬法を開発している。Yabe 精錬法は独自に開発した太陽光励起レーザーを用い、20,000℃の高温を得ている。現在実証試験中。 詳しくは、 (株)ペガソス・エレクトラ (PEGASOS ELECTRA Co., Ltd.)にお問い合わせ願いたい。
If interesting, please go to here.

Monday, March 18, 2013

Future lays somewhere beyond lithium-based chemistries-9

I. Next Generation Batteries 2013: April 30- May 1, 2013 - Boston, MA
>> More
II. Northeastern University Announces a Two Day Summit on Large Scale Energy Storage: May 2-3, 2013 in Boston, MA USA
>> More

Tin Nanoneedles: A Cost Effective, Industry-Scalable Anode Technology for Lithium-ion BatteriesTin is an attractive anode technology for next generation lithium-ion batteries because of its higher theoretical capacity than graphite.
However, there is a large volume change during lithiation/delithiation cycling, which can degrade cell performance.
To accommodate the volume change we synthesize the tin in the form of 1-D nanostructures using electroplating.
Cell performance shows that these nanostructured tin anodes deliver capacities close to the theoretical value and have cycling stability exceeding most non-carbon-based anodes. Electroplating is a cost effective and industry scalable process to directly form tin nanostructures for lithium-ion battery anodes.
Because of the mild synthesis conditions a wide range of substrates, including flexible and wearable materials, can be coated. This presentation will be given by M. Grant Norton, PhD of Washginton State Univeristy at Next Generation Batteries 2013.If interesting, please go to Event

Saturday, March 16, 2013

AeroTrain


A large-scale technology development is now progressing. The technology concerns a next-generation high-speed transport system (AeroTrain). The developers are Prof. Kohama (Tohoku University, New Industry Creation Hatchery Center) et al. The performances of AeroTrain are far superior to those of Shinkansen and Linear Motor Car. It should be noted that the transport system is designed based on the concept of eco-friendly. He is quite willing to devote his technology ability and talent to realizing the eco-friendly society. The transport system will go into real service in 2020. The research/development of the AeroTrain is being made in part of the NEDO project. During and in connection with the development, a magnesium fuel cell was developed.
The high-speed transport system has wings, and flies at the height of 10 cm above the ground and at the speed of 500 km/h, while moving within and along a train guideway, which is U-shaped in cross section. The transport system uses well combination of the principle of flotation and the ground effect. This causes the train to take a minimum running resistance, and results in reduction of the energy consumption by the train and allowing use of the small powering source of the train. In addition, flame-retardant magnesium alloy (Mg-Al-Ca, developed by AIST) is used for making the train body. Use of the alloy also contributes to the running resistance reduction. Those reasons enable the electric power generated by using renewable-energy based power generators, such as solar battery and wind power, to power the train. The guideways for the transport system may be constructed in the space along and above the existing railways or roads. This leads to reduction of the construction cost of the AeroTrain guideways.
ART003 (AeroTrain movie): It succeeded in the first manned flight on June 22, 2011. Max. speed = 200 km/h, No. of passenger = 2, energy consumption = 35 kCal/man/km. Train body = 400 kg, and AUW ([all-up weight] = 530 kg. Fuel consumption amount = less than the half of that by Shinkansen, and = less than 1/5 of that by Linear Motor Car. The train body is made of flame-retardant magnesium alloy. (modified old article)If interesting, please go to here.

エアロトレイン

今、大きな技術の開発が行われている。それは次世代高速輸送システム(エアロトレイン)である。 開発者は小濱教授(東北大学、未来科学技術共同研究センター)等。現在の新幹線とリニアモーターカーをはるかに凌ぐ性能を持つ。注目すべきは、この輸送システムは環境親和をその基本に置いている。環境親和は氏の科学者としての信念であり技術的な理想でもある。本格的な運行を2020に予定している。この研究・開発は、現在、NEDOプロジェクトの一環に組み込まれている。この開発との関連で、マグネシウム燃料電池が開発された。

この高速輸送システムは翼を持ち、断面U字型の誘導壁に沿い地表から10 cmの高さを500 km/hで飛ぶ。この輸送システムは翼の浮揚原理と地面効果を利用している。走行抵抗が最小となり、これがエネルギー消費を小さくし、車両駆動源が小さくて済む。さらに、難燃マグネシウム合金(Mg-Al-Ca 合金、産総研九州センターが開発)を車体に使用。これがさらにそれを後押しする。 このため、輸送体の駆動は太陽電池などの自然エネルギーによる発電電力で間に合う。輸送システム用路線は既存路線の上空間に設置可能。これは建設費の削減につながる。

ART003号機 (走行試験動画): 2011年6月22日、有人浮上走行実験に成功。最高速度200km/h、2人乗り、35kCal/人/km。燃料消費量 = 新幹線の半分以下,リニアの1/5以下。難燃マグネシウム合金製、機体重量400kg、総重量520㎏。(古いものの修正です。)
If interesting, please go to here.

Wednesday, March 13, 2013

Future lays somewhere beyond lithium-based chemistries-8

I. Next Generation Batteries 2013  April 30- May 1, 2013 - Boston, MA
>> More
II. Northeastern University Announces a Two Day Summit on Large Scale Energy Storage  May 2-3, 2013 in Boston, MA USA
>> More

Discovery of a >250 mAh/g, Non-Layered Oxide Cathode Material for Lithium-Ion Batteries
Wildcat Discovery Technologies has developed a high throughput synthesis and screening platform for battery materials.
Wildcat’s system produces materials in bulk form, enabling evaluation of its properties in a standard cell configuration.
This allows simultaneous optimization of all aspects of the cell, including the active materials, binders, separator, electrolyte and additives. Wildcat is using this high throughput system to develop new electrode and electrolyte materials for a variety of battery types (primary, secondary, aqueous, non-aqueous).
In this talk, I will discuss our latest discovery, a non-layered oxide cathode with capacity >250 mAh/g, irreversible capacity <10>
and superior rate capability, cycle life, and energy stability to lithium-rich layered oxides in full cells.
This presentation will be given by Steven Kaye, PhD of Wildcat Discovery Technologies at Next Generation Batteries 2013
If interesting, please go to Event

Monday, March 4, 2013

Future lays somewhere beyond lithium-based chemistries-7

I. Next Generation Batteries 2013
April 30- May 1, 2013 - Boston, MA
>> More
II. Northeastern University Announces a Two Day Summit on Large Scale Energy Storage
May 2-3, 2013 in Boston, MA USA

Call for speakers is open.
>> More

I. Idaho National Laboratory's Advances toward Inorganic Li-Ion Cell ChemistriesSafety and longevity of lithium-ion batteries can benefit by an overall reduction of carbon within the cell chemistry.
For example, conventional organic carbonate solvents have low flash points and are not suitable for operation at 5V, while carbon anodes have been shown to trigger the fate of cathode stability under thermal runaway.
Idaho National Laboratory (INL) is developing alternative cell materials for electrolytes and electrodes that are resilient at elevated temperatures, higher voltages, and offer distinct opportunities to custom-engineer attributes of battery performance and life.
This presentation will be given by Kevin Gering of INL at Next Generation Batteries 2013.
If interesting, please go to here

II. Northeastern University Announces a Two Day Summit on Large Scale Energy Storage on May 2-3, 2013 in Boston, MA USA
This workshop from Northeastern University and the Knowledge Foundation called “Meeting the Challenges of Next Generation of Large Scale Energy Storage” will examine the latest research related to electrochemical energy storage and will parlay this in the context of requisite need for policy innovations which will enable entrepreneurial initiatives in this field.
Scheduled for May 2-3, 2013 at Northeastern University, this event will be held in the form of four separate sessions.
Call for speakers is open. The submission deadline is March 4th, 2013.

If interesting, please go to here.